45 research outputs found

    Merging smart card data and train movement data: How to assign trips to trains?

    Get PDF
    This report explains the assignment method applied to link trips compiled in smart card data to train movements recorded in the signalling system. Particular attention has been paid to (1) origin-destination pairs with multiple potential route options, (2) peak-hour trips delayed by di culties in boarding crowded trains at the origin station, and (3) trips originating or ending on rail lines not included in the train movement dataset. In the current version of this paper the metro network on which the method has been applied is anonymised

    Formal Specification and Testing of a Management Architecture

    Get PDF
    The importance of network and distributed systems management to supply and maintain services required by users has led to a demand for management facilities. Open network management is assisted by representing the system resources to be managed as objects, and providing standard services and protocols for interrogating and manipulating these objects. This paper examines the application of formal description techniques to the specification of managed objects by presenting a case study in the specification and testing of a management architecture. We describe a formal specification of a management architecture suitable for scheduling and distributing services across nodes in a distributed system. In addition, we show how formal specifications can be used to generate conformance tests for the management architecture

    The Gini index of demand imbalances in public transport

    No full text
    The paper studies a general bidirectional public transport line along which demand varies by line section. The length of line sections also varies, and therefore their contribution to aggregate (line-level) user and operational costs might be different, even if demand levels were uniform. The paper proposes the Gini index as a measure of demand imbalances in public transport. We run a series of numerical simulations with randomised demand patterns, and derive the socially optimal fare, frequency and vehicle size variables in each case. We show that the Gini coefficient is a surprisingly good predictor of all three attributes of optimal supply. These results remain robust with inelastic as well as elastic demand, at various levels of aggregate demand intensity. In addition, we find that lines facing severe demand imbalances generate higher operational cost and require more public subsidies under socially optimal supply, controlling for the scale of operations. The results shed light on the bias introduced by the assumption of homogeneous demand in several existing public transport models

    Demand imbalances and multi-period public transport supply

    No full text
    This paper investigates multi-period public transport supply, i.e. networks in which capacity cannot be differentiated between links and time periods facing independent but nonidentical demand conditions. This setting is particularly relevant in public transport, as earlier findings on multi-period road supply cannot be applied when the user cost function, defined as the sum of waiting time and crowding costs, is nonhomogeneous. The presence of temporal, spatial and directional demand imbalances is unavoidable in a public transport network. It is not obvious, however, how the magnitude of demand imbalances may affect its economic and financial performance. We show in a simple back-haul setting with elastic demand, controlling for total willingness to pay in the network, that asymmetries in market size reduce the attainable social surplus of a service, while variety in maximum willingness to pay leads to higher aggregate social surplus and lower subsidy under efficient pricing. The analysis of multi-period supply sheds light on the relationship between urban structure, daily activity patterns, and public transport performance

    MaaS economics: Should we fight car ownership with subscriptions to alternative modes?

    No full text
    Proponents of the Mobility as a Service concept claim that subscriptions to alternative modes can effectively reduce car ownership and the adverse effects of underpriced car use. We test this hypothesis in a microeconomic model with endogenous mode choice as well as car and subscription ownership. The model contains congestible urban rail and car sharing options as substitutes of underpriced private car use. We find that aggregate car ownership is not a reliable proxy for road congestion: subscriptions may reduce car ownership while increasing the vehicle miles travelled by remaining car owners. Subscriptions induce welfare losses for two reasons. First, pass holders overconsume the alternative modes, as the marginal fare they face drops to zero. Second, non-pass holders tend to shift to car use due to the crowding induced by pass holders, causing additional distortions. We illustrate numerically that differentiated pricing is more efficient in achieving the goals of MaaS

    A dynamic choice model to estimate the user cost of crowding with large scale transit data

    No full text
    Efficient mass transit provision should be responsive to the behaviour of passengers. Operators often conduct surveys to elicit passenger perspectives, but these can be expensive to administer and can suffer from hypothetical biases. With the advent of smart card and automated vehicle location data, operators have reliable sources of revealed preference (RP) data that can be utilized to estimate transit riders’ valuation of service attributes. To date, effective use of RP data has been limited due to modelling complexities. We propose a dynamic choice model (DCM) for population-level longitudinal RP data to address prominent challenges. In the DCM, riders are assumed to follow different decision rules (compensatory and inertia/habit) and temporal switching between decision rules based on experience-based learning is also formulated. We develop an expectation-maximization algorithm to estimate the DCM and apply our model to estimate passenger valuation of crowding. Using large-scale data of two months with over four million daily trips by an Asian metro, our DCM estimates show an increase of 47% in passenger’s valuation of travel time under extremely crowded conditions. Furthermore, the average passenger follows the compensatory rule on only 25.5% or fewer trips. These results are valuable for supply-side decisions of transit operators

    The economics of seat provision in public transport

    No full text
    Seated and standing travelling imply significantly different experience for public transport users. This paper investigates with analytical modelling and numerical simulations how the optimal seat supply depends on demand and supply characteristics. The paper explores the implications of seat provision on the marginal cost of travelling as well. In crowded conditions, we distinguish two types of external costs: crowding density and seat occupancy externalities. We derive, using a realistic smart card dataset, the externality pattern of a metro line, and identify the distorting role of the occupancy externality that makes the welfare maximising fare disproportionate to the density of crowding

    Social distancing in public transport: mobilising new technologies for demand management under the Covid-19 crisis

    No full text
    Dense urban areas are especially hardly hit by the Covid-19 crisis due to the limited availability of public transport, one of the most efficient means of mass mobility. In light of the Covid-19 pandemic, public transport operators are experiencing steep declines in demand and fare revenues due to the perceived risk of infection within vehicles and other facilities. The purpose of this paper is to explore the possibilities of implementing social distancing in public transport in line with epidemiological advice. Social distancing requires effective demand management to keep vehicle occupancy rates under a predefined threshold, both spatially and temporally. We review the literature of five demand management methods enabled by new information and ticketing technologies: (i) inflow control with queueing, (ii) time and space dependent pricing, (iii) capacity reservation with advance booking, (iv) slot auctioning, and (v) tradeable travel permit schemes. Thus the paper collects the relevant literature into a single point of reference, and provides interpretation from the viewpoint of practical applicability during and after the pandemic

    The boundary between random and non-random passenger arrivals: robust empirical evidence and economic implications

    No full text
    In this paper, we investigate the influence of train headways on passenger platform wait times using automated data from the London Underground metro system. For high frequency services, the literature suggests that passenger arrivals are random and that under perfectly random conditions with all other factors held constant, wait times are equivalent to half of the headway between trains. We test this hypothesis using large-scale smart card and vehicle location data, which enables the extraction of access times from total passenger journey times as well as the precise measurement of train headways. Using a semi para-metric regression modelling framework, we generate non-linear estimates of the relationship between access times and headway while conditioning for other service supply and demand factors. Marginal platform wait times are then derived numerically via an exposure-response model framework which accounts for potential confounding between the walking and waiting components of access times, thus enabling quantification of the unbiased impact of headways on wait times. For three lines in central London, we observe that marginal wait times transition from greater than half of the headway to approximately one third of the headway astrain frequencies decrease. The transition occurs in the range between 2-3 minute headways, lower than earlier estimates in the literature. A series of numerical simulations illustrate the importance of waiting time sensitivity in the optimisation of public transport services. In comparison with the standard wait time assumption, our exercise reveals that the degree of density economies is milder than what the literature suggests, and this may neutralise some of the economic justifications of high public transport subsidie
    corecore